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SUMMARY

An implicit, upwind arithmetic scheme that is ef®cient for the solution of laminar, steady, incompressible, two-
dimensional ¯ow ®elds in a generalised co-ordinate system is presented in this paper. The developed algorithm is
based on the extended ¯ux-vector-splitting (FVS) method for solving incompressible ¯ow ®elds. As in the case
of compressible ¯ows, the FVS method consists of the decomposition of the convective ¯uxes into positive and
negative parts that transmit information from the upstream and downstream ¯ow ®eld respectively. The
extension of this method to the solution of incompressible ¯ows is achieved by the method of arti®cial
compressibility, whereby an arti®cial time derivative of the pressure is added to the continuity equation. In this
way the incompressible equations take on a hyperbolic character with pseudopressure waves propagating with
®nite speed. In such problems the `information' inside the ®eld is transmitted along its characteristic curves. In
this sense, we can use upwind schemes to represent the ®nite volume scheme of the problem's governing
equations. For the representation of the problem variables at the cell faces, upwind schemes up to third order of
accuracy are used, while for the development of a time-iterative procedure a ®rst-order-accurate Euler backward-
time difference scheme is used and a second-order central differencing for the shear stresses is presented. The
discretized Navier±Stokes equations are solved by an implicit unfactored method using Newton iterations and
Gauss±Siedel relaxation. To validate the derived arithmetical results against experimental data and other
numerical solutions, various laminar ¯ows with known behaviour from the literature are examined. # 1997 by
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Various time-dependent methods, both implicit and explicit, have been proposed during the last two

decades for the solution of incompressible ¯ow ®elds. For the development of implicit iterative

procedures for incompressible ¯ows the discretization of the Navier±Stokes equations requires

particular consideration, since the time derivative of the density no longer appears. Hence the time-

dependent implicit methods suitable for compressible ¯ows cannot be applied without adaptation.

For time-iterative procedures one approach consists of solving the time-dependent momentum

equations in connection with a Poisson equation for the pressure obtained by taking the divergence of

the momentum equations and expressing the condition of the divergence-free velocity ®eld; this is a

pressure correction method. The above method of solving Poisson's equation for the pressure was

developed ®rst by Harlow and Welch.1
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An arithmetic structure similar to the compressible equations can be recovered by adding an

arti®cial compressibility term in the form of the time derivative of the pressure to the continuity

equation. This is the pseudocompressibility method introduced initially by Chorin2 and Steger and

Kutler3 and developed for the solution of steady, unsteady and 3D ¯ow ®elds by Peyret and Taylor,4

Chang and Kwak,5 Choi and Merkle,6 Rizzi and Erikson,7 Kwak et al.,8 Merkle and Athavale,9 Soh

and Goodrich10 and others.

The incompressible equations after the addition of the pseudocompressibility term take on a

hyperbolic character with pseudopressure waves propagating with ®nite speed. In such problems `the

information' inside the ¯ow ®eld is transmitted along its characteristic curves. In this sense we can

relate the sign of eigenvalues to the upwind representation of the ¯ow variables at the cell faces. The

upwinding of the inviscid ¯uxes gives more freedom in devising implicit algorithms3,11 since it loads

up the diagonals of the implicit factors. Upwind differencing12,13 also alleviates the necessity to add

and tune the numerical dissipation for numerical stability and accuracy as in the schemes with central

differencing that belong to the family of Beam±Warming schemes.14

The upwind scheme of the hyperbolic problem in this paper is based on the extended (by the

method of pseudocompressibility) ¯ux-vector-splitting (FVS) method. FVS is a shock-capturing

upwind method that is well known for solving compressible high-speed (transonic and hypersonic)

¯ows. Two of the best known FVS methods are those of Steger and Warming15 and van Leer.16

Steger and Warming's FVS method is based on the splitting of the ¯ux vectors into positive and

negative parts. The positive part carries upstream `information' and relates to the positive eigenvalues

of the problem. The negative part carries downstream `information' and relates to the negative

eigenvalues of the problem. In hyperbolic problems (compressible ¯ows) at each directory separately

the eigenvalues give characteristic curves along which the information is transmitted inside the ®eld.

For the above splitting the homogeneous property of the Euler equation is used. This property is valid

because of the existence of an equation of state for gases.

The FVS method of van Leer constructs the ¯uxes as a function of the local Mach number.

Here, we extend the FVS method of Steger and Warming for solving incompressible ¯ow ®elds

implicitly, based on the implicit scheme of References 17±19. In such ¯ow ®elds the splitting of the

convective ¯ux vectors has to change sense because of their non-homogeneous property. This is a

very important element of the present study.

The values of the ¯ux vectors at the cell faces are approached by upwind schemes up to third order

of accuracy, such as the MUSCL (monotone upstream centred for conservation law) scheme3 and

hybrid upwind extrapolation.19

The unfactored discretized Navier±Stokes equations are solved by an implicit ®rst-order-accurate

(in time) scheme using a Gauss±Seidel relaxation technique. This is also an important new element of

the present study, because in this way the errors that coexist with an implicit method of approximate

factorization are avoided.

The governing equations of the problem are presented in Section 2. In Section 3 the new ¯ux-vector-

splitting method, the ®nite volume formulation and the upwind schemes used are developed. In Section 4

the described numerical method is applied for the calculation of various ¯ow ®elds in order to validate

the present results against experimental data and numerical results from other arithmetic schemes.

2. GOVERNING EQUATIONS

The dimensionless Navier±Stokes equations for the representation of 2D incompressible ¯ow ®elds

after the addition of the pseudocompressibility term to the continuity equation, in conservative form
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in a Cartesian system of co-ordinates (x, z), are

@q

@t
� @e
@x
� @g
@z
� 1

Re

@r

@x
� @s
@z

� �
; �1�

where Re is the Reynolds number for the examined ¯ow ®eld, q � �p=b; u;w�T is the conservative

unknown solution vector (p is the pressure, b is the pseudocompressibility parameter and u and w are

the velocity components) and e, g and r, s are the convective and diffusive ¯ux vectors respectively at

the plane (x, z):

e � �u; u2 � p; uw�T; g � �w; uw;w2 � p�T;
r � �0; txx; txz�T; s � �0; tzx; tzz�T:

�2�

The shear stresses are expressed as

txx � ÿ 2
3
�ÿ2ux � wz�; txz � tzx � �uz � wx�; tzz � ÿ 2

3
�ux ÿ 2wz�: �3�

The governing equations after the transformation to a generalized system of co-ordinates �x; z� take

the form

@Q

@t
� @E
@x
� @G
@z
� 1

Re

@R

@x
� @S
@z

� �
; �4�

with E, G and S, R the transformed inviscid and viscous ¯ux vectors respectively:

E � J �exx � gxz�; G � J �ezx � gzz�;
R � J �rxx � sxz�; S � J �rzx � szz�:

�5�

Thus the inviscid ¯ux vectors are

E � �U ; uU � pxx;wU � pxz�T; G � �W ; uW � pzx;wW � pzz�T; �6�
where U � uxx � wxz and W � uzx � wzz are the contravariant components of the velocity vector at

the transformed plane. J � xxzz ÿ xzzx is the Jacobian of the transformation from Cartesian co-

ordinates (x, z) to generalized co-ordinates �x; z�.
The unsteady term added to the continuity equation is the quantity �1=b�@p=@t. The addition of the

pseudocompressibility term causes the unsteady terms of the momentum equations to lose their

physical meaning, which is only recovered at steady state, where the divergence-free condition of the

continuity equation is satis®ed. Thus the time derivative of the conservative solution vector of (1) or

(4) acts as an auxiliary term for the construction of a hyperbolic system of equations. As a result,

some of the available implicit arithmetic methods can be adapted for the prediction of a steady state

solution; here the adaptation of the FVS method is presented. In this way the coupling of the ¯uid

pressure with the velocity vector of the ¯ow ®eld, which is the primary problem in the solution of

incompressible ¯ow ®elds, is achieved.

3. IMPLICIT SCHEME AND FLUX-VECTOR-SPLITTING METHOD

3.1. Time integration and ¯ux-splitting method

Flux-splitting methods are based on the splitting of the convective vectors, so in this section the

®nite volume scheme for the Euler equations is considered:

@Q

@t
� @E
@x
� @G
@z
� 0: �7�
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The ®rst-order (in time) discretized implicit scheme for the Euler equations has the form:

Qn�1 ÿ Qn

Dt
� @E

n�1

@x
� @G

n�1

@z
� 0: �8�

A Newton iterative method can be constructed for the prediction of Un�1 by linearizing the ¯uxes in

(8) about the known time level n:

En�1 � En � AnDQ; �9a�

Gn�1 � Gn � CnDQ; �9b�

where A � @E=@Q and C � @G=@Q are the Jacobian matrices of the ¯ux vectors E and G respectively

and DQ � Qn�1 ÿ Qn is the correction of the conservative variables between two successive time

levels of the iterative procedure. The above linearizations yield equation (8) in the form

Qn�1 ÿ Qn

Dt
� �AnDQ�x � �CnDQ�z � ÿ�Ex � Gz�n: �10�

The ¯ux-vector-splitting method consists of the decomposition of the convective ¯ux vectors into

two parts in accordance with the sign of the eigenvalues:

E � E� � Eÿ; �11a�

G � G� � Gÿ: �11b�

Therefore the upwind representation of the ¯uxes at the cell faces of the cell-centred collocated

grid, which is required for the discrete representation of the ¯ux derivatives on the RHS of (10), is

achieved. This splitting gives the direction of the upwinding when the discrete representation of the

¯ux vectors Ex and Gz is obtained by the differences in the values of the ¯uxes E and G at the cell

faces.

This approximation for the ¯uxes Ex and Gz for the FVS method with the use of upwind

differencing is accomplished in the case of compressible ¯ows, where the ¯uxes are homogeneous

functions of the primitive variable vector Q. The homogeneous property is valid because of the

existence of an equation of state in the case of a compressible ¯uid.

In the case of incompressible ¯ow as examined in this paper, the homogeneous property for the

¯ux vector is not valid. Thus for the split representation of the ¯ux vectors Ex and Gz the following

interpretation is used:

@E

@x
� @E
@Q

@Q

@x
� A

@Q

@x
; �12a�

@G

@z
� @G
@Q

@Q

@z
� C

@Q

@z
: �12b�

The discretization of the ¯ux vectors here requires the upwind representation of the vector

variables Q at the cell faces in accordance with the sign of the eigenvalues of the Jacobian matrices A

and C. The splitting of the fuses is achieved by the splitting of the Jacobian matrices A and C into a
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positive and a negative part related to the positive and negative eigenvalues respectively, as in the

case of compressible ¯ows. Speci®cally the splitting of the present method takes the form

@E

@x
� A�

@Q�

@x
� Aÿ

@Qÿ

@x
� �TL�Tÿ1� @Q

�

@x
� �TLÿTÿ1� @Q

ÿ

@x
; �13a�

@G

@z
� C�

@Q�

@z
� Cÿ

@Qÿ

@z
� �NL�Nÿ1� @Q

�

@z
� �NLÿNÿ1� @Q

ÿ

@z
; �13b�

where L and L are the diagonal matrices of the eigenvalues of the Jacobian matrices A and C

respectively. These matrices are decomposed into a positive �L�; L�� and a negative �Lÿ; Lÿ� part

containing the positive and negative eigenvalues respectively. Speci®cally, the values of the above

quantities for the Jacobian A are L � diag�l0; l1; l2�, L � L� � Lÿ, with L� � diag�l�0 ; l�1 ; l�2 � and

Lÿ � diag�lÿ0 ; lÿ1 ; lÿ2 �, where l�i � �l�i � jl�i j�=2, i � 0; 1; 2, l0 � uxx � wxz � U , l1 � l0�
�l2

0

p
� b�x2

x � x2
z �� and l2 � l0 ÿ �l2

0

p
� b�x2

x � x2
z ��, and the matrices T and Tÿ1 are the left and

right eigenvector matrices respectively. The corresponding values for the Jacobian C are L �
�l0; l1; l2�, L � L� � Lÿ, with L� � diag�l�0 ; l�1 ; l�2 � and Lÿ � diag�lÿ0 ; lÿ1 ; lÿ2 �, where l�i �
�l�i � jl�i j�=2, i � 0; 1; 2, l0 � uzx � wzz � W , l1 � l0 � �l2

0

p
� b�z2

x � z2
z �� and l2 �

l0 ÿ �l2
0

p
� b�z2

x � z2
z ��, and the matrices N and Nÿ1 are the left and right eigenvector matrices

respectively.

The plus (� ) sign in (13) indicates the Jacobians A and C corresponding to the positive eigenvalues

and dictates a backward upwinding for the quantities @Q�=@x and @Q�=@z, while the minus (ÿ ) sign

denotes the `negative' matrices A and C and a forward upwinding for the quantities @Qÿ=@x and

@Qÿ=@z.

The upwind discrete from of the derivatives of the vector variables can be considered in the

following two ways.

(a) One can make the assumption

@Q

@x

� ��
i;k

� Q�i�1=2;k ÿ Q�iÿ1=2;k;
@Q

@x

� �ÿ
i;k

� Qÿi�1=2;k ÿ Qÿiÿ1=2;k; �14a�

@Q

@z

� ��
i;k

� Q�i;k�1=2 ÿ Q�i;kÿ1=2;
@Q

@z

� �ÿ
i;k

� Qÿi;k�1=2 ÿ Qÿi;kÿ1=2: �14b�

In this way the upwind representation of the vector variables at the cell faces is required and it

is obtained from the sign of the eigenvalues at the centre of the current ®nite control volume.

(b) One can calculate the derivatives @Q=@x and @Q=@z at the cell faces with central differencing

of the values of the vector variables at the cell centres:

�Qx�i�1=2;k � Qi�1;k ÿ Qi;k; �Qx�iÿ1=2;k � Qi;k ÿ Qiÿ1;k; �15a�

�Qz�i;k�1=2 � Qi;k�1 ÿ Qi;k ; �Qz�i;kÿ1=2 � Qi;k ÿ Qi;kÿ1: �15b�
One consequently expresses with upwind representation the values of the derivatives of the

vector variables at the centre of the control volume in accordance with the splitting of the

Jacobian matrix A, thus increasing the order of accuracy of the arithmetic scheme used.

For both splittings the values of the Jacobian matrix A are calculated at the centre of the cell and in

accordance with these splitting is obtained. Calculations have been made with both the above

schemes for various test cases.
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3.2. Unfactored implicit relaxation solution of Navier±Stokes equations

Time integration of the implicit unfactored equations is performed with a relaxation Gauss±Seidel

method that allows high CFL numbers. The implicit algorithm is ®rst-order-accurate in time.

The unfactored equations are solved by a Newton method constructing a sequence of

approximations qn such that limn>1 qn! Qn�1, where n is the subiteration state. A Newton form is

obtained with the linearization of (8), which has been described in Section 3.1, around the known

subiteration state n as follows:

J
Dqn�1

Dt
� �An

invDqn�1�x � �Cn
invDqn�1�z � �An

visDqn�1�x � �Cn
visDqn�1�z � J

Qn ÿ qn

Dt
ÿ RHS; �16�

with

RHS � Ex � Gz ÿ
1

Re
�Rx � Sz�

� �n

;

where qn and qn�1 are the solution vectors at the subiteration states n and n� 1 respectively. Ainv;Cinv

and Avis;Cvis are the Jacobian matrices of the inviscid �E;G� and viscous �R; S� ¯uxes respectively.

The Jacobian matrices of the viscous terms, Avis and Cvis, have been calculated by taking into account

the fact that the viscous ¯uxes are functions of the velocity components and of the spatial derivatives

of the velocity components as well, in order to ensure the second-order accuracy of the present

scheme.

The terms �An
invDqn�1�x, �Cn

invDqn�1�z, �An
visDqn�1�x and �Cn

visDqn�1�z or the LHS of (16) are

discretized at �i; k� with a scheme of up to second-order accuracy in space. For example, for the

quantity �An
invDq�x � �An

visDq�x at the cell �i; k� we apply the scheme:20

�An
invDq�x � �An

visDq�x � �An
invDq�i�1=2 ÿ �An

invDq�iÿ1=2 � �Avis�i�Dqi�1 ÿ 2Dqi � Dqiÿ1�: �17�
The above inviscid ¯uxes of the LHS of (16) are split as

�An
invDq�i�1=2 � �TL�Tÿ�i�1=2Dq�i�1=2 � �TLÿTÿ1�i�1=2Dqÿi�1=2; �18a�

�An
invDq�iÿ1=2 � �TL�Tÿ�iÿ1=2Dq�iÿ1=2 � �TLÿTÿ1�iÿ1=2Dqÿiÿ1=2; �18b�

with Dq extrapolated consistently to the right-hand side:

Dq�i�1=2 � bDqi � �1ÿ b��1�5Dqi ÿ 0�5Dqiÿ1�; �19a�

Dqÿiÿ1=2 � bDqi � �1ÿ b��1�5Dqi ÿ 0�5Dqi�1�; �19b�

Dqÿi�1;2 � Dqi�1; �19c�

Dq�iÿ1=2 � Dqiÿ1: �19d�
The matrices T ;L and Tÿ1 are calculated at the cell faces from arithmetic means of the conservative

variables. For the ®nite volume face �i� 1
2
; k�;Dq is extrapolated up to second order for positive

eigenvalues depending on the sensor b. The parameter b is taken as a function sensing the non-

monotonic distribution of pressure in the ¯ow ®eld in order to reduce the order of extrapolation down

to ®rst order to guarantee monotonic behaviour of the ¯ow ®eld in regions with increased pressure

gradients.

After the discrete representation of the LHS and RHS quantities a point Gauss±Seidel technique is

used for the solution of the system of algebraic equations for the correction vector variable Dq�i; k�.
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In accordance with the present techniques, at the LHS there remain only the terms that contribute to

the diagonal term �i; k� as coef®cients of the unknown vector Dqi;k . One term of this coef®cient is the

quantity J=Dt that strengthens diagonal dominance and therefore stability. The resultant system is a

36 3 system of algebraic equations.

A Gauss±Seidel relaxation technique using six subiteration states is applied on the LHS of (16),

while the RHS is held constant at each of the two Newton subiterations (n) that are accomplished for

the solution of (16). The ¯uxes at the RHS from the previous time step are multiplied by an

overrelaxation factor o that compensates errors of different spatial order of accuracy on the RHS and

LHS and accelerates the convergence to the steady state; this is permissible because the RHS

approaches zero as the steady state solution is reached.

3.3. Upwind schemes

For the calculation of the plus (� ) and minus (ÿ ) states of either the conservative variables Q at

the cell faces or the derivatives of the conservative variables at the centre of each cell we use

extrapolation formulae of up to third-order accuracy. Here it is recalled that for the numerical

representation of the computational domain a cell-centred collocated rectilinear grid is used.

The schemes used for the upwind representation are as follows.

Hybrid upwind extrapolation. In the literature, FVS methods for compressible ¯ows have been

developed using this class of upwind schemes with third and fourth orders of accuracy. Here we use

the same formulations for up to third-order-accurate approaches.

(a) First order (classic upwinding):

�Q1
i�1=2;k�� � Qi;k; �Q1

i�1=2;k�ÿ � Qi�1;k : �20�
(b) Second order:

�Q2
i�1=2;k�� � 1

2
�3Qi;k ÿ Qiÿ1;k�; �Q2

i�1=2;k�ÿ � 1
2
�3Qi�1;k ÿ Qi�2;k�: �21�

(c) Third order:

�Q3
i�1=2;k�� � 1

6
�5Qi;k ÿ Qiÿ1;k � 2Qi�1;k�; �22�

�Q3
i�1=2;k�ÿ � 1

6
�5Qi�1;k ÿ Qi�2;k � 2Qi;k�: �23�

MUSCL scheme. In the case of compressible ¯ows this is one of the most used extrapolations.

Here it is used for incompressible ¯ows too. It is the following three-point scheme:

Q�i�1=2;k � Qi;k �
gi;k

4
��1ÿ kgi;k�H� �1� kgi;k�D�Qi;k;

Qÿi�1=2;k � Qi�1;k ÿ
gi�1;k

4
��1� kgi�1;k�H� �1ÿ kgi�1;k�D�Qi�1;k;

�24�

with DQi;k � Qi�1;k ÿ Qi;k and HQi;k � Qi;k ÿ Qiÿ1;k . The spatial accuracy depends on the parameter

k. For instance, k� 7 1 produces fully upwinded, k� 0 symmetric, k � 1
3

third-order biased and

k� 1 centred schemes. The limiter g is the van Albada sensor21

gi;k �
1

2

HQi;kDQi;k

�HQi;k�2 � �DQi;k�2 � e
; �25�
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where e is a small number. The role of the limiter in compressible ¯ows is to reduce the order of

accuracy in those regions where strong discontinuities of the ¯ow are observed. Such regions are in

the vicinity of shock waves.

3.4. Boundary conditions

For the imposition of boundary conditions on the ¯ow ®eld, pseudocells are set all around the

computational domain. The imposed values of the problem variables at these cells are such that their

interpolation with values from interior cells gives the prescribed conditions at the boundaries of the

¯ow ®eld.

For the case of an inviscid ¯uid the free slip condition is imposed at the solid and freestream

boundaries. For viscous ¯ow at the no-slip surfaces the velocity vector is speci®ed to be zero and the

normal to the surface pressure gradient is set to zero in accordance with boundary layer theory.

Furthermore, boundary conditions are prescribed on DQ in phantom cell rows. At the boundaries

where the variables Q are prescribed, the corresponding vector DQ is set equal to zero, while at the

boundaries where Q is calculated by extrapolation, the quantity DQ is also calculated by extrapolation

of the same order of accuracy as for Q.

For internal ¯ows at the out¯ow boundary a constant static pressure is imposed and fully developed

¯ow is assumed for the prediction of the velocity components.

4. VALIDATION OF NUMERICAL METHOD AND RESULTS

4.1. Flow over a backward-facing step

4.1.1. Flow over a backward-facing step for Re� 389. In this case the ¯ow over a backward-

facing step for Re� 389 is examined and the computational results are compared with the

corresponding experimental data.22 The geometry of the computational domain is shown in Figure 1.

The reference quantities used for the calculation of the Reynolds number are the mean velocity of the

¯uid at the inlet, which is equal to two-thirds of the measured maximum velocity, as Uref and the

hydraulic diameter of the inlet (small) channel, which is equivalent to twice its height �D � 2h�, as

Lref .

At the inlet cross-sectional area a parabolic pro®le was imposed for the axial dimensionless

velocity u � 24z�0�5ÿ z� for 04 z4 0�5 and the vertical velocity component w was set equal to

zero. For the corresponding pressure we assumed zero pressure gradient in the x-direction. On the

solid walls of the above geometry the no-slip condition was imposed for the velocity components and

zero normal pressure gradient was taken for the computation of pressure. At the exit, fully developed

¯ow was assumed. This fact dictates zero gradient in the x-direction for the velocity components and

Figure 1. Dimensional schematic representation of backward-facing step geometry
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Figure 2. Comparisons of axial velocity pro®les of u-velocity component at various stations along channel with corresponding
experimental data of Armaly et al.:22 (a) x=s� 2�55, 3�06, 3�57 and 4�18; (b) x=s� 4�80, 5�41, 6�12 and 7�14; (c) x=s� 7�76,

9�18, 11�07 and 13�57
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constant pressure (equal to zero) at the exit cross-sectional area. In order to warrant the condition of

fully developed ¯ow, the total dimensionless length of the channel was taken as L� 15.

The resultant pro®les of the axial velocity component at various stations along the channel are

in good agreement with the corresponding available experimental data,22 as can be seen in Figures

2(a)±(c).

Two different grids (with increasing number of nodes) we used to ensure the grid size

independence of the present results (Figure 3).

An investigation of the in¯uence of the limiter on the MUSCL scheme is also attempted. The

introduction of the van Albada limiter for the reduction of the accuracy of the upwind scheme in the

vicinity of discontinuities seems not to in¯uence the accuracy of the results for the same grid as above

(756 20) (Figure 4), but it has the valuable capability of a marked reduction of the iterations for

convergence of the ¯ow ®eld. This impressive reduction is evident in Figures 5(a)±5(c), where the

convergence histories of the ¯ow ®eld primitive variables are presented.

Figure 3. Horizontal velocity pro®les along channel for two different grids: x=s� 2�55, 4�80, 7�14 and 11�84

Figure 4. Represenative axial velocity pro®le for comparison of MUSCL schemes with and without addition of limiters:
x=s� 3�57
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Figure 5. Convergence histories of primitive ¯ow variables of MUSCL schemes with and without addition of limiters: (a)
pressure; (b) u-velocity component; (c) w-velocity component

Figure 6(a). Dimensionless backward-facing step geometry
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Figure 6(b). Non-uniform 1506 31 grid for discrete representation of computational domain

Figure 7. Comparison of (a) horizontal and (b) vertical velocity pro®les at sections x� 7 and 15 with corresponding results of
Gartling23
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4.1.2. Flow over a backward-facing step for Re� 800. In this ¯ow ®eld the important element is

the precise prediction of the two recirculation zones that are developed downstream of the backward-

facing step for Re� 800. This prediction is essential in the case of incompressible ¯ows because of

the fact that the existence of regions with high gradients of the ¯ow ®eld variables is closely related to

regions where the velocity vector changes its direction. The geometrical data of the present

computational domain are presented in Figure 6(a). Re was calculated with the following reference

quantities. As Uref the average in¯ow velocity was set and as Lref the height H of the channel was set.

The inlet velocity pro®le was speci®ed as a parallel ¯ow with a parabolic horizontal component given

by u�z� � 25z�0�5ÿ z� for 04 z4 0�5. As out¯ow boundary condition a parallel, fully developed

¯ow was assumed for the components of the velocity vector and constant static pressure at the exit

cross-sectional area was imposed. For this reason and for the present Re the total dimensionless

length of the channel was taken equal to 30.

Pro®les of both velocity components u and w and comparisons with the corresponding numerical

results from Reference 23 are presented in Figures 7(a) and 7(b). The two developed recirculation

zones that are formed are clearly depicted by the representation of the streamfunction contours in

Figure 8.

The exact determination of the extent of the recirculation zones is achieved with the calculation of

the shear stress distributions along the upper and lower walls, which are shown in Figure 9. In this

®gure the calculated stress distributions are also compared with the corresponding results from

Reference 23 with noticeable agreement. The precise locations of separation and reattachment points

Figure 8. Streamfunction contours for clear representation of two recirculation zones� The formatted level values are 7 0�30,
ÿ0�025, 7 0�020, 7 0�015, 7 0�010, 7 0�005, 0�0, 0�050, 0�100, 0�150, 0�200, 0�250, 0�300, 0�350, 0�400, 0�450, 0�490,

0�500, 0�502 and 0�504

Figure 9. Shear stress distributions along upper and lower channel walls

ARTIFICIAL COMPRESSIBILITY METHODOLOGY 535

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 523±545 (1997)



for the present numerical method as compared with the corresponding ones from the literature are

presented in Table I.

Also important for the validation of the present results is the precise prediction of the pressure level

inside the resultant ¯ow ®eld. By using as reference pressure the pressure on the edge of the

backward-facing step, comparisons of the pressure pro®les at cross-sections x� 7 and 15 with the

corresponding ones from the literature are shown in Figure 10. Furthermore, comparisons of the

pressure distributions along the upper and lower walls are presented in Figures 11(a) and 11(b).

It is reasonable to conclude from the above comparisons that the behaviour of the ¯ow ®eld

predicted by the present numerical method (with the use of quite a coarse grid, 1506 31) is in

excellent agreement with the corresponding data from the literature obtained by other numerical

methods.

The grid used for the solution of the ¯ow ®eld is the 1506 31 non-uniform grid (coarser in the

vicinity of the facing step) shown in Figure 6(b). The grid independence of the above results was

examined with the use of a 2006 41 uniform grid. The results were identical for the two grids; as an

indication of this fact the velocity pro®les of Figures 12(a) and 12(b) are presented.

4.1.3. Flow over a backward-facing step for various Re. In this case of ¯ow over a backward-

facing step the segment from the inlet of the channel to the expansion of the channel was taken into

account for the calculation of the ¯ow ®eld. Thus the computational grid that was used for the

discrete representation of the ¯ow domain is non-Cartesian.

Figure 10. Pressure pro®les across channel at cross-sections x� 7 and 15

Table I. Comparison of derived recirculation regions with corresponding results of a ®nite element method23

Lower wall eddy Upper wall eddy

Length of
recirculation zone

Separation
point

Reattachment
point

Length of
recirculation zone

FVS method 6.10 4.87 10.37 5.50
(grid 1506 31)
Gartling23 6.10 4.85 10.48 5.63
(grids 4006 20, 6006 30, 8006 40)
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The geometrical data and the computational grid (2006 25) are shown in Figure 13. The ratio of

the expanded channel height (H) to the inlet height (2h) is two. The reference quantities that were

used for the calculation of Re are the mean velocity of the ¯uid at the inlet as Uref and the half-height

of the inlet channel (h) as Lref . The total dimensionless length of the channel was taken as L� 50.

The ¯ow ®eld over this backward-facing step was calculated for 10 different Reynolds numbers (in

the range 7±115) in order to predict the recirculation length downstream of the sudden expansion of

the channel. The resultant lengths were compared with the corresponding experimental data from the

literature.22,23 For the above range of Re, linear relationships between the recirculation length and Re

are concluded in the literature. Sobey24 gives Ls � 2� 0�13 Re and Armaly et al.22 give

Ls � 2� 0�14 Re (Figure 14).

4.2. Flow in a square cavity

This case of ¯ow is usually examined for testing and evaluating numerical techniques because of

the simplicity of the geometry and the complexity of the developed ¯ow ®eld with multiple regions

Figure 11. Pressure distributions along (a) lower and (b) upper channel walls
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Figure 12. (a) Horizontal and (b) vertical velocity pro®les at sections x� 7 and 15 for two different grids

Figure 13. Numerical grid (2006 25) for representation of ¯ow ®eld over backward-facing step
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of recirculation near the corners. The geometry of the computational domain is shown in Figure 15.

The quantities that were used for the calculation of the Reynolds number were the lid speed as

Uref and the length of the side of the square cavity as Lref . Thus the dimensionless u-velocity

pro®le at the top boundary was set at u� 1 and on the other boundaries the no-slip condition was

applied.

Here the ¯ow problem in a cavity was solved for three Reynolds numbers (100, 400 and 3200)

and for various grid re®nements. The presented pro®les concern the u-velocity component on the

vertical centreline of the cavity (x� 0�5), the w-velocity component along the horizontal

centreline of the cavity (z� 0�5) (Figures 16(a)±16(f)) and their comparisons with the

corresponding numerical25,26 and experimental27 data from the literature. The dimensions of

the uniform grids that have been used for the ¯ow ®eld with Re� 100, 400 and 3200 are 406 40,

806 80 and 1206 120 respectively. For the above Reynolds numbers the grid independence of

the resultant ¯ow ®elds has been examined with the use of 806 80, 1006 100 and 1406 140

uniform grids respectively.

The streamline and vorticity contours for the cavity ¯ow con®gurations with Re increasing from

100 to 3200 are shown in Figures 17(a)±17(f) in order to give a clear impression of the ¯ow ®eld. As

is well known and clearly seen in these ®gures, the centre of the primary vortex is offset towards the

top right corner at Re� 100 and moves towards the geometrical centre of the cavity with an increase

in Re. The extent and position of all the secondary vortices that are developed near the corners of the

Figure 14. Recirculation lengths for various Re and comparison with experimental data from literature

Figure 15. Schematic representation of cavity geometry
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Figure 16. Comparisons of u- and w-velocity pro®les at centrelines of cavity:24 (a), (b) Re� 100; (c), (d) Re� 400; (e),
(f) Re� 3200
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Figure 17. Streamline and vorticity contours for cavity ¯ow: (a), (b) Re� 100; (c), (d) Re� 400; (e), (f) Re� 3200
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cavity are in excellent agreement with other numerical methods from the literature.25 Similar

agreement is observed for the contours of the vorticity function. As Re increases, several regions of

high vorticity gradient, indicated by concentration of the vorticity contours, appear within the cavity.

The convergence histories of the ¯ow ®eld primitive variables for Re� 100 and 400 are shown in

Figures 18(a) and 18(b). The convergence criterion used is that the maximum residual of the

primitive ¯ow variables in the entire ¯ow ®eld must be less than 16 1075. In most cases a suf®cient

limit for convergence to a steady state is 16 1074. The abrupt reduction of the pressure residual is

Figure 18. Convergence histories of ¯ow ®eld primitive variables: (a) Re� 100; (b) Re� 400
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due to the external reduction of the corresponding underrelaxation factor for the acceleration of

convergence in cases where it is slower (low Re).

4.3. Comments on present FVS method

In this subsection some general observations on the behaviour of the above-described method are

presented.

Of upwind schemes used for most cases examined, those of third-order accuracy give solutions

with better precision according to the density of the numerical grid. Of the third-order-accurate

upwind schemes, the MUSCL scheme with limiters appears to have a better behaviour regarding the

convergence history of the ¯ow ®eld variables, i.e. the number of iterations until convergence is

achieved and the rate of reduction of the pressure residual as the ¯ow ®eld reaches a steady state. The

last remark is mentioned because of the FVS method, as for most numerical methods for

incompressible ¯ow ®elds, the pressure converges to the desired rate with more dif®culty than the

velocity components do, and additionally, for pseudocompressibility methods, the pressure residuals

represent the order of convergence of the continuity equation. The above remarks for the upwind

schemes are described in Figure 19 for the ¯ow over a backward-facing step. An additional concept

illustrated in this ®gure, which could be investigated extensively, is that of thin layer approximation

for the viscous terms, when a streamwise direction exists for the examined ¯ow ®eld, in order to

reduce the computational time.

One of the characteristic properties of the upwind schemes is the ability to transmit `information'

on the ®eld in accordance with the direction of transmission which is indicated by the characteristic

curves of the ®eld. The upwind representations are therefore more sensitive to the construction of the

grid used for the discretization of the computational domain. In order to establish this fact, an

806 80 non-uniform grid (Figure 20(a)) that is ®ner near the solid boundaries, where the

development of the boundary layer occurs, is used for the prediction of the ¯ow ®eld for Re� 3200.

The computational results for the velocity pro®les at the centrelines of the cavity are shown in Figure

20(b) in comparison with the corresponding results derived with a 1206 120 uniform grid (these

results have been tested in Section 4.2). The accuracy of the computational results for this dif®cult

case of ¯ow is evident.

Figure 19. Plots of u-velocity component at four stations for ¯ow over backward-facing step using various upwind schemes and
thin layer approximation
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5. CONCLUSIONS

The object of the present work was to develop an ef®cient numerical method for the solution of

incompressible ¯ow ®elds, based on the hyperbolic character of the Navier±Stokes equations when a

pseudocompressibility term is added to the continuity equation. It is about the FVS method, which is

a well known shock-capturing method for the solution of compressible ¯ows. For incompressible

¯ows the FVS method with the use of upwind schemes transmits `information' inside the ¯ow ®eld in

accordance with the sign of the eigenvalues of the resultant hyperbolic system of governing

equations. A very important element of the developed method is that the unfactored discretized

Navier±Stokes equations are solved by an implicit ®rst-order-accurate (in time) scheme using a

Gauss±Seidel relaxation technique. The unfactored scheme alleviates errors that coexist with an

implicit method of approximate factorization. Furthermore, the use of upwind schemes makes the

coef®cient matrices diagonally dominant and allows, in relation to the unfactored scheme, the use of

high CFL numbers (up to 10,000), consequently accelerating the convergence of the examined ¯ow

®elds. In this work we also examined various upwind schemes used for the discrete representation of

the ¯ow ®eld variables at cell faces, their in¯uence on the accuracy of the method and the

convergence history until a steady state is reached.

The formulation of the present FVS method was examined and validated for different ¯ow cases,

comparing them against experimental and numerical results from the literature with excellent

agreement.

Extension of the present FVS method to unsteady ¯ows is a subject of current research.
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